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Characterization of electroosmotic flow in rectangular microchannels
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Abstract

In this paper, the electroosmotic displacing process between two solutions (namely the same electrolyte of different concentrations) in
a rectangular microchannel is studied theoretically and experimentally. Firstly, the electric potential and velocity field in a rectangular
microchannel are obtained by solving the governing equations. Fourier transform method is used to solve the electrolyte concentration
profile equation. The electric current versus time curve through the microchannel is predicted based on the concentration profile
obtained. The current monitoring technique is then used to study the electroosmotic displacing process. The results from the measured
current–time relations agree well with those from the prediction, suggesting a reliable theoretical model developed in this study.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The study in microfluidics is rapidly becoming a very
important area of research due to numerous potential
applications in separation and analysis. Performing biolog-
ical analysis on a microfluidics based bioMEMS or lab-on-
a-chip usually involves sample preparation, treatment,
injection, delivery, separation and detection. Most sub-
stances acquire surface electric charges when in contact
with an aqueous (polar) medium. The rearrangement of
the charges on the solid surface and the balancing charges
in the liquid results in the formation of the electrical double
layer (EDL) [1]. If an electric field is applied tangentially
along a charged surface, the electric field will exert a body
force on the ions in the diffuse layer, resulting in electroos-
motic flow (EOF). EOF can provide a very flat velocity
profile, thus avoiding smearing [2]. Besides, other advanta-
ges of electroosmotic pumping such as valve-less switching,
accurate control of transportation and manipulation of
liquid sample by an electrical field and with no solid
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moving parts make electroosmosis a preferred method for
transporting liquids in microfluidics.

Burgreen and Nakache [3] studied the effect of the sur-
face potential on liquid transport through ultrafine capil-
lary slits assuming Debye–Hückel linear approximation
for the electrical potential distribution under an imposed
electrical field. Rice and White [4] discussed the same prob-
lem in narrow cylindrical capillaries. Levine et al. [5]
extended the Rice and Whitehead’s model to cases involv-
ing high zeta potentials. Yang and Li [6] studied the elec-
trokinetic effects of pressure-driven flow in rectangular
microchannels using a finite difference scheme. In Yang’s
study, the motion of the liquid with electrokinetic effects
was analytically solved by employing the Green function
formulation. Mala et al. [7] reported a study of microchan-
nel flow and heat transfer in two parallel plates. Tsao [8]
studied the electroosmosis through an annulus with
Debye–Hückel linear approximation and Kang et al. [9]
studied the electroosmosis in annuli with high zeta poten-
tials by introducing a correction to account for the finite
thickness of the EDL and geometrically related factors.
More recently, the alternating current (AC) electroosmosis
in rectangular microchannels has been studied by Yang
et al. [10], Erickson and Li [11], and Marcos et al. [12].
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Fig. 1. Schematic of the rectangular microchannel and the coordinate
system used for modeling.
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In applications, electroosmotic pumps have been fabricated
by packing micron sized particles into fused silica capillar-
ies [13] and by using standard micromachining techniques
[14].

In studying the electrokinetic phenomena, one of the
most important characterization parameters is zeta poten-
tial. In many practical situations, it is difficult to obtain a
reliable estimate of zeta potential, because zeta potential
cannot be measured directly. Different ways to measure
the value of zeta potential have been proposed, these
include a conventional microelectrophoresis method [15]
and the micro particle image velocimetry (micro-PIV) tech-
nique [16]. In the latter, Yan et al. [16] formulated an
expression to determine the electrophoretic velocity of the
tracer particles and the EOF field of the microchannel
through the measurement of the steady velocity distribu-
tions of the tracer particles in both open- and closed-end
rectangular microchannels under the same water chemical
conditions. Another simple experimental method, termed
the current monitoring method, was first suggested by
Huang et al. [17] in which the electroosmotic flow rate
was monitored using the electric current change, when
one solution is electrokinetically displaced by the same
solution with a slight difference in ionic concentration.
Arulanandam and Li [18] employed this method to evalu-
ate the zeta potential and the surface conductance. In these
experiments, the average velocity of electroosmosis flow
was determined by measuring the time required to com-
pletely displace a solution by another similar solution in
the capillary tube. The zeta potential value was determined
by fitting the measured average velocity to the theoretical
model developed in the study [18]. Ren et al. [19] improved
the current monitoring method by using the slope of the
measured correlation of the current versus time to achieve
a better accuracy. The electroosmotic displacing process in
a circular capillary was later studied numerically by Ren
et al. [20] using a finite control volume method to solve a
mathematical model accounting for three zones of solution,
namely solution 1 zone, mixing zone and solution 2 zone.
Analytically, Ren et al. [21] developed mathematical
formulations for the displacing process in the cylindrical
capillaries based on two models: the sharp interface and
the mixing zone models.

The above mentioned cases studied the electroosmotic
flow displacing processes in cylindrical capillaries. How-
ever, in practice, the microchannel networks in lab-on-a-
chip platforms are usually fabricated by microelectronic
fabrication techniques [22,23], and these channels are rect-
angular rather than cylindrical in cross section. This paper
presents an in-depth analysis of electroosmotic displacing
process of one solution with another in rectangular micro-
channels. A mathematical model is developed to describe
the electroosmotic flow in a rectangular microchannel.
The model includes solving the Poisson–Boltzmann’s equa-
tion for EDL potential distribution and the modified
Navier–Stokes equation for the electroosmotic flow field
by the separation of variables method, and the mass trans-
port equation using Fourier transform method. Based on
the mass transport equation, the average electroosmotic
velocity is determined by measuring the time needed to
transport the electrolyte across the microchannel. The zeta
potential is also obtained. The theoretical predictions for
the current–time relationship are compared with measured
results. Good agreement is obtained.

2. Mathematical model

2.1. Electrical double layer potential distribution

A straight rectangular microchannel of width 2W,
height 2H and length L is shown in Fig. 1. In this theoret-
ical model, the channel wall is assumed to be uniformly
charged so that the electrical potential in the EDL varies
in the x and y directions only. Due to the symmetry of
the potential and velocity fields, the solution domain can
be reduced to a quarter cross section of the channel. It is
further assumed that the electric charge density is uninflu-
enced by the external electric field due to thin EDLs; there-
fore the charge convection can be ignored and thus the
electric field equation and the fluid flow equation are
decoupled [24]. Introducing the dimensionless parameters:
X ¼ x

Dh
; Y ¼ y

Dh
;W ¼ z0e

kT w and Dh ¼ 4HW
HþW , and assuming a

small zeta potential, the electric potential due to charged
wall can be described by the linearized Poisson–Boltz-
mann’s equation which can be written in terms of dimen-
sionless variables [12] as

r2W ¼ K2W; ð1Þ
where K ¼ jDh is the ratio of the length scale Dh to
the characteristic double layer thickness 1/j. Here j is
the Debye–Hückel parameter, given by

j ¼ ere0kbT
2z2

0e2n0

� �1=2

;

where z0 is the valence, e is the fundamental electric charge,
w is the electric potential, er is the relative permittivity, and
e0 is the permittivity in vacuum.
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The boundary conditions along the symmetrical lines is
oW
oX ¼ 0 at X = 0 and oW

oY ¼ 0 at Y = 0. At the channel wall,
W ¼ �f at X ¼ W

Dh
and Y ¼ H

Dh
. Using the separation of vari-

able method, the solution to the linearized Poisson–Boltz-
mann equation gives

WðX ; Y Þ ¼ 4�f
X1
n¼1

ð�1Þnþ1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2n�1Þ2p2D2

h

4K2W 2

q
� KY

� �

ð2n� 1Þp cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2n�1Þ2p2D2

h

4K2W 2

q
� KH

Dh

� �

� cos
ð2n� 1ÞDhp

2W
X

� �

þ 4�f
X1
m¼1

ð�1Þmþ1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m�1Þ2p2D2

h

4K2H2

q
� KX

� �

ð2m� 1Þp cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m�1Þ2p2D2

h

4K2H2

q
� KW

Dh

� �

� cos
ð2m� 1ÞDhp

2H
Y

� �
: ð2Þ

The ionic net charge density in the EDL can be expressed
by [25]

�qe ¼ �2W: ð3Þ
Fig. 2. Schematic of the solution displacement inside the microchannel.
2.2. Electroosmotic flow field

The motion of an incompressible fluid is governed by
the Navier–Stokes equation, which is expressed as

q
oV

ot
þ qðV � rÞV ¼ �rp þ Fþ lr2V ; ð4Þ

where V is the velocity vector, p is the pressure, F is the
external force, q and l are the density and dynamics viscos-
ity of the fluid [26].

Using the following assumptions

(1) The fluid is Newtonian;
(2) the properties of the fluid are independent of local

electric field, thus only diluted solutions are consid-
ered in this study;

(3) the fluid’s properties are temperature independent.
Joule heating effect could increase the temperature,
but it can be negligible for diluted solution or under
low electric field strength;

(4) the flow field is steady, fully developed and obeying
no-slip conditions at the channel wall, and

(5) there is no pressure gradient along the microchannel,
and the two reservoirs are large enough to maintain
the same pressure level.

Eq. (4) is thus reduced to

lr2u ¼ �qeE; ð5Þ

where E is the applied electric field strength, qe is the ionic
net charge density and u is the velocity [24].
The boundary conditions are described by

ujx¼W ¼ 0; ujy¼H ¼ 0;

ou
ox

����
x¼0

¼ 0;
ou
oy

����
y¼0

¼ 0:
ð6Þ

Introducing dimensionless parameters, U ¼ u
U0

and using

the separation of variables method, the analytical velocity
field inside the quarter domain is obtained as [25,27]

UðX ; Y Þ ¼ �4
Eere0kT
lzeU 0

�f
X1
m¼1

ð�1Þmþ1 cos ð2m�1ÞDhp
2H Y

h i
ð2m� 1Þp

�
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m�1Þ2p2D2

h

4K2H2

q
� KX

� �

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m�1Þ2p2D2

h

4K2H2

q
� KW

Dh

� � � cosh ð2m�1ÞDhp
2H X

h i

cosh ð2m�1ÞDhp
2H

h i
8>><
>>:

9>>=
>>;

� 4
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2W Y
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cosh
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2W Y
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ð7Þ
The average electroosmotic velocity can be found as

U ¼ 1

A

Z
UðX ; Y ÞdA; ð8Þ

where the integration is over the quarter domain of the
microchannel.

2.3. Solution displacement in the microchannel

The solution displacing model studied is shown in Fig. 2.
There are two reservoirs containing the same electrolyte
solution but with two different concentrations, c1 and c2,
where c1 and c2 are not significantly different, (e.g.,
c1 = 70% c2). A rectangular microchannel connects the
two reservoirs. Initially, the connecting channel is filled
with solution of concentration c1. Immediately after an
electric field is applied along the channel, electroosmotic
flow is generated. Gradually, the solution of higher concen-
tration from the reservoir 2 displaces the solution of lower
concentration towards the reservoir 1.
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The solution displacement along z direction is governed
by the mass transport equation [28]

oc
ot
þ �u

oc
oz
¼ D

o2c
oz2

; ð9Þ

where c is the bulk concentration, t is the time, �u is the
average velocity and D is the diffusion coefficient. By intro-
ducing non-dimensional parameters: Pe ¼ �uDh

D , �t ¼ tD
D2

h

,
Z ¼ z

Dh
and C ¼ c�c1

c2�c1
, Eq. (9) in the dimensionless form

can be written as

oC
o�t
þ Pe

oC
oZ
¼ o

2C

oZ2
; ð10Þ

where Pe is Peclect number. Eq. (10) is subjected to the ini-
tial and boundary conditions shown below:

Cj�t¼0 ¼ 0;

Cjz¼0 ¼ 1;

where L ¼ l
Dh

is the dimensionless channel length.
Introducing new variables g ¼ Z � Pe�t and s ¼ �t, the

mass transport equation can be simplified to that shown
in Eq. (11)

oC
os
¼ oC2

og2
: ð11Þ

Using the Fourier transform theorem, the Fourier trans-
form [29] of a function f(x) is

F ðaÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z 1

�1
f ðtÞeiat dt;

and the inverse Fourier transform of F(a) is

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z 1

�1
F ðaÞe�ixt da:

Then, it can be shown that the solution to Eq. (11) can be
expressed as

Cðg; sÞ ¼
1
2

1þ erf �g
2
ffiffi
s
p

� 	h i
for g < 0;

1
2

1� erf g
2
ffiffi
s
p

� 	h i
for g > 0:

8><
>: ð12Þ

In the z and t coordinates, Eq. (12) can be rewritten as

cðz; tÞ ¼
1
2
ðc2 � c1Þ 1þ erf �ut�z

2
ffiffiffiffi
Dt
p

� 	h i
þ c1 for �ut > z;

1
2
ðc2 � c1Þ 1� erf z��ut

2
ffiffiffiffi
Dt
p

� 	h i
þ c1 for �ut < z:

8><
>:

ð13Þ
From the current-monitoring method, the total displace-
ment time tmax can be obtained from measurement
via the recorded current–time relationship, and theoreti-
cally it also satisfies cðl; tmaxÞ ¼ c2. Together with Eq.
(13), the average velocity can be determined. Finally, the
corresponding zeta potential can be found from Eqs. (7)
and (8).
2.4. Current prediction

Once the concentration profile of the solution in the
channel is known, the resistance of the solution and the
current I(t) through the channel can be found. The resis-
tance of the solution is then given by Ohm’s Law
R ¼ l

kAtotal
, in which R is the resistance, l is the length, Atotal

is the total cross section area of the conductor (equals the
channel cross section area), and k is the conductivity of
the electrolyte solution. Noted that k depends on the con-
centration of the electrolyte solution during the solution
displacement, the total resistance of the electrolyte in the
channel can be written as

RtotalðtÞ ¼
Z l

0

dx
kiðcÞAtotal

: ð14Þ

The current is given by

IðtÞ ¼ El
RtotalðtÞ

: ð15Þ
3. Experimental setup and discussion

In the measurement setup, the current monitoring
method is used to study the characteristics of the electroos-
motic flow in a rectangular microchannel. The experimen-
tal setup consists of a high voltage power supply (CZE
1000R, Spellman, USA), a personal computer (PC), a data
acquisition system (BNC 2110 unit, National Instruments
Corporation), flow reservoirs (manufactured using Teflon
material), and polyimide-fused silica capillaries (Polymicro
Technologies Incorporated, USA).

The microcapillaries with square cross section of
100 lm � 100 lm and 75 lm � 75 lm were cut to 5 cm in
length and used to connect reservoir 2 (higher concentra-
tion c2) and reservoir 1 (lower concentration c1). Initially,
the microcapillary was filled with NaCl (Sigma–Aldrich)
electrolyte solution of a lower concentration c1. Platinum
electrodes were inserted in both reservoirs with the ground-
ing to reservoir 1 and high voltage power supply unit to
reservoir 2. Measurements were conducted using electro-
lyte solution NaCl of different concentrations, 10�2 M,
10�3 M, in microchannel of different dimensions, 75 lm
and 100 lm, under different applied electric fields of
200 V/cm, 400 V/cm, 600 V/cm and 700 V/cm.

The current–time curves from both measured and pre-
dicted are shown in Fig. 3. The electric current increases
with time after an electric field is applied. An EOF is
induced, whereby the higher concentration solution dis-
places the lower concentration one causing the variation
in electrical current along the flow direction. The current
reaches a constant and maximum value when the higher
concentration solution completely displaces the lower con-
centration solution. The stable current level indicates the
completion of the displacement process. The good agree-
ment between the prediction and the measured values sug-
gests the validation of the theoretical model.
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The effects of the applied electric field strength and the
ionic concentration on electroosmotic velocities are shown
in Fig. 4a and b. It can be seen that the electroosmotic
velocity is proportional to the applied electric field
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Fig. 4. Average EOF velocity versus (a) electric field strength for 10�3 M
NaCl and (b) NaCl concentration under electric field strength 200 V/cm.
strength. The results also show that as the NaCl concentra-
tion decreases, the EOF velocity increases. Furthermore,
the results show that the EOF velocity is independent of
the channel size.

It is noted that the higher the NaCl concentration, the
lower the zeta potential, f, as shown in Fig. 5. Hence the
electroosmotic velocity is lower for electrolyte of higher
concentration. Moreover, it is clear that f is independent
of the electric field and channel size, suggesting that f is
an intrinsic property of the channel material and the elec-
trolyte solution. This is in accordance with the findings in
the study of Arulanandam and Li [18].

Fig. 6 shows the variations of the dimensionless concen-
tration profile of the solution during the displacement pro-
cess. The concentration level of the solution in the
microchannel can be divided into three zones, the higher
concentration zone with concentration value of c2, the
lower concentration zone with concentration value of c1

and a mixing zone with concentration value lies between
c1 and c2. Initially, the microchannel is filled with solution
with concentration value of c1. Upon the application of an
electric field, the electrolyte solution with concentration
value of c2 from reservoir 1 displaces the solution with
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concentration value of c1 as a result of the electroosmotic
flow. Therefore, there exists a mixing zone at the interface
of these two zones.

The mixing zone becomes larger as diffusion occurs over
time, as shown in Fig. 6. As compared to the total length of
the microchannel, the length of the mixing zone is insignif-
icant. Thus, in some previous work [18], a sharp interface
or no mixing zone was assumed. Such assumption is rea-
sonable only when the mixing zone length is negligible,
especially in the case of short displacement time between
the two solutions. However, when the EOF velocity is
low as compared to the length of the channel, a longer time
is needed to complete the displacement process and thus
diffusion takes place over a longer time duration. In this
case, the sharp interface assumption may not be accurate.
In such cases, the theoretical solution proposed in this
paper can better describe the displacement process.
4. Conclusion

The characteristics of electroosmotic flow in rectangular
microchannels, such as electroosmotic velocity and zeta
potential were investigated both theoretically and experi-
mentally. In the theoretical analysis, the potential distribu-
tion and the velocity field of the fluid in the microchannel
were derived using the Poisson–Boltzmann equation and
the Navier–Stokes equation, respectively. The concentra-
tion profile of the displacement process was obtained by
solving the mass transport equation using the Fourier
transform method. The measured current–time relation
was compared with the theoretical prediction. Good agree-
ment between experimental results and theoretical predic-
tions was obtained which indicates the reliability of the
theoretical solution proposed in this study. The model is
particularly suited for cases with non-zero mixing length
between the two solutions.
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